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Abstract-The stress analysis of Kollar and Springcr (\ 992) Int. J. Solids Structures 29. 1499-1517.
is appllO;:d to tiber-reinforced organic matrix composite cylinders subjected to hygrothermal and
mechanical loads. The wall of the cylinder may be "thin" or "thick". An individual fiber must
remain at the same radial distance from the axis; no other restrictions are placed either on fiber
orientations or on stacking sequence. The applied loads may vary radially and circumferentially.
but not axially. Solutions are presented which yield radially and circumferentially varying strains
and stresses inside composite cylinders.

I. INTRODUCTION

In a previous paper (Knll~tr and Springer, 1992) we derived a set of equations which can
be used to calculate the stresses and strains in anisotropic laminated composite cylinders
and cylindrical segments. In the present papcr we apply the analysis to composite cylinders
suojel:ted to hygwthermal and mechanil:al loads. The etjuations given by Kollilr and
Springer (rclerred to as P;tper I) arc not repwduced here. We only introdul:e those etjuations
which arc required for the solution of the problem and which ;Ire in addition to those given
in the pn:vious paper.

It is recalled that the solution is a three-dimensional c1astil:ity solution of problems in
whidl the loads, the stresses and the strains may vary radially and circumfcrentially, but
not axially.

:!. I'({OIlI.EM STATEM ENT

We wnsider a cylinder made of!l layers of unidirectional tiber reinforced composites
(Fig. I). There is no restriction on either the number of plies or the orientation (ply­
angle) of the libers in each ply. Hence the cylinder may be "thick" and the layup may be
unsymmetric. However, the cylinder must be long. so that the length L is large compared
to the thil:kness h and to the inner r' and outer r" radii (hiL« I, r"jL« I, r'/L « I). This
approximation implies that the edge ellects arc neglected.

The cylinder may be subjected to hygrothermal and mechanical loads which may vary
in the raJial rand eircumferential () directions, but must be independent of the axial
coordinate x. Thus. the temperature ilT and the moisture content ile inside the composite
may vary with rand 0 but not with x. Here ilT and ile are the known temperature and
moisture content relative to prescribed reference values Tr and er

ilT(IJ,r) = T- Tr ilc(O,r) = C-Cr • (I)

The temperature ilT and the moisture ile can be expressed 111 a Fourier series
(Appendix A).

A mechanical load N, may be imposed along the edge, as shown in Fig. 2. Axial, radial
and circumlerential surface loads (I'~.I':.I';,:p~ ,1';', p;;) may also be applied on the inner
and outer surfaces. All these loads may vary with 0 but not with x. In addition, the cylinder
may be subjected to a torque T and a bending moment M. The only restriction is that the

t On leave from the Technical University of Budapest. Department of Reinforced Concrete Structures. 15:! I
lIun~ary. Budapest.
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Fig. 1. Geometry or the closed cylinder.

mechanical loads must be in equilibrium. i.e. under their combined action the cylinder
cannot undergo rigid body motion.

The inner and outer surfaces of the cylinder may be free or fi.xed. as shown in Fig. 3.
On a fixed surface the displacements arc zero; forces on such a surface cannot be specified.
If neither the inner nor the outer surface is fixed. the applied forces must be in equilibrium
and must satisfy the following equilibrium conditions:

force equilibrium in the.\' direction

en ,"p~' dO _ (', " p~ dO = 0 ;
Jo In

(2)

",T(8.r)

A C(8.r)

Fig. :!. Illustration of the loads on ~I dosed cylinder.
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Both surfaces Inner surface is fixed.
are free outer is free

© @
Inner surface is free. Both surfaces

outer is fixed are fixed

@ @o~'#
Fi~. 3. The wnditinns on the inner and outer surfaces of a closed cylinder.

forcc cquilibrium in thc.r dircl:tion

f1' r" : 1';' ellS II - 1','; sin II} dll - f~" r' [I'; cos (J - 1';, sin O} dO = 0;
(I l)

rorl:C clJuilibrium in the;; dircl:tioll

f ~" r" [1';' sin 11-,,;; cosO} d(J-f~" r' {I'; sin 0-1';' cosO} dO = 0;
II l)

moment equilibrium about the x axis

(3)

(4)

(5)

The objective is to find the stresses and strains inside the composite, under the combined
action of the temperature, moisture and mechanical loads.

3. DISPLACEMENTS

The axial, circumferential and radial displacements in the lth layer have the general
form (eqn 1.7)t

II/(X. O. r) = II~(X. 0,,) + II~(O,,) + Ii~(x. 0,,)

r/(x.OJ) = r~(x.O.r)+t·~(O,r)+L'~(.".O")

wl(x. O. r) = w,~(x. O. r) + II'UO. r) + 11';1 (x. O. r). (6)

The displacements u~.L'~.w~ are given by eqn (1.9), u~.v~.I1/~ by eqn (1.15) and
II~. v~. IV~ by eqn (1.46). The superscript ref<:rs to the lth ply. These displacements contain
a number of unknown constants in each layer (Table I) which must be determined with
the aid of the continuity conditions and thc boundary conditions. The continuity conditions

t The numeral I preceding an equation numhcr. a figure number or a table number refers to an equation.
a figure or a lable in Papcr I.
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Table I. The unknown constants in the displacements. continuity. periodicity. no rigid body motion and boundary
conditions

u~.l'~" K'~'

u~. t'~. w~ j#1 I j=1 u~.r~.I4·~

Unknowns (one layer) A~. A~ G:•. k = I. 2..... 6 ""'. H~~'
u~. u~. u:. u~ G;:. j= 1.2..... number of Fourier k= U ... .6
l'~. r~. t·:. r~ terms ,,·'.H;'

Number of unknowns 10. n (2.6) n 2+(2.6) n
for each Fourier term

Continuity conditions 10. (n-I) (2.6) (n-I) (2·6)(n-l)
for each Fourier term

Periodicity conditions u~ = O. l'~ = 0

No rigid body motion uJ = o. (.J = 0 Gi, = O. G,'; = 0 H~' = O. H~' = 0

Boundary conditions if 6 2.6 2*5 2.6
there are no rigid body for each Fourier term
motions

arc given in Tables 7--10 in Paper I. and arc not n.:produced here. The boundary conditions
which must be applied in a specific problem arc described subsequently. First. it is noted
that for a dosed cylinder certain periodicity conditions lIlUst also be satisfied. The periodicity
conditions rellect the fact that each displacelllent must be a periodic fUIH.:tion of II. and lllust
have the same value at II and at (J+ 2n. i.e.

II'(X. II. r) = 11\1:.0 + 2n. r).

1"(x.O.r) = 1"(x.O+2n.r).

11,1(x. O. r) = 11,1 (x. 0 +2n. r). (7)

For It,~. l',~. II',~ these conditions require that the following equalities be satislied (eqn (1.9)J

It~ = O. l'~ = O. (X)

When II~ and l'~ are zero in any given ply. they must be zero in every ply by virtue of the
continuity conditions (Table Un. Thus. the periodicity conditions in eqn (S) become

It~ = O. l'~ = O. (9 )

To satisfy the requin:ments ofeqn (7) we must also set II" equal to n in the expressions for
IIt.l't·. ll'~. Thus. II~. d. Il't become (eqn (1.15)]

11:(0,,) = L {1I/(r)sinjO: - L [It,'*(r)cosjll}
/- I /- I

l'~({),r) = L {1','(r)sinjO; - L (t','*(r) I.:OS jO!
/ ... 1 , .. I

11'~({).r) = L {1I,/(r)cosjO} + L {lr/*(r)sinjV:.
/_ I /_ I

(10)

Equations (9) arc the periodicity conditions. The unknown constants in the expressions
for the displacements (see Table I) must be determined with the use of these periodicity
conditions. together with the conditions of no rigid body motion. the continuity conditions.
and the boundary conditions. The no rigid body motion and continuity conditions are
specified in Paper I by eqns (56)-(58) and by Tables 7-10. respectively. The required
boundary conditions arc given in this paper.
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4. GENERAL BOUNDARY CONDITIONS

In this section we present the general forms of the boundary conditions for a closed
cylinder. We will then apply these boundary conditions to specific loading conditions.

4.1. Axial load. torque and moment
The axial load IV" the torque T. and the M, and M: components of the bending

moment in terms of the axial (J, and shear stress r,,, are (Figs 2 and 4)

N, = f'" f~" ru,(V.r) dOdr
,.' II

( II )

( 12)

( 13)

( 14)

where M,. and ~f; arc the I.:omponents of the applied bending moments in the x-y and x-:
planes. respectivdy (Fig. 4).

4.2. Surfacl' loads
Axial p,. radial!". and cirl.:umfcrentialloads !,,,I.:an be applied on the inner and outcr

surfal.:cs. As slaled beforc e~ll.:h of thcse loads may vary with O. On the inncr and outcr
surfaccs the applied surfal.:e loads arc rdated lo the stresses by the expressions

p;(U) = (1.' (0. r)

p;(lJ) = rr',,(O. r). r = r'

Z ....-+-+-t'

Fig. 4. Components of the bending moment M.
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p~(O) :::: ct;(O. r)

p,':(O) :::: r~II(O.r). r:::: rO.

p~(O) :::: r;,(f}.r) (16)

The superscripts i and 0 refer to the inner and outer surfaces. and I and n to the innermost
(l == I) and outermost (l n) plies.

The surface loads may be expressed in terms of the Fourier series

P""(O):::: , 'p""'COS}'W+ '\' Ip'"u·sin ,'{F
f L t r/ j /- t rl _ . j

I~l} ,~ll

p:;"«(}):::: L :p:i~'sinjO:+ L {P:i;'·cosjO:
J~ () i= H

(" '''(O) :::: )' Ip"'" sin ,'W + ' Ip"'u. cos ,'(Jl
" ~ t 'f . J L. t" .,.

,~l) I"'" II

( 17)

The manner in which the constants /; and p. are determined is discussed in Appendi'\
A [eqns (A5·-A 7)], Equations (17) apply at ooth the inner (superscript i) and outer surfaces
(superscript 0), Suostituting these surface forces into eqns (:2-5) the equilibrium conditions
GIn oe expressed in terms of /; and /;•. The results are summariled in Appendix B.

The stresscs may also he wriuen in series form. as shown in Table 1.5. The following
four strcss components. takcn from Table 1.5. an.: of imerest here

(I ) , r • '()I, f '.' '{l' . ,. (I'" ()t7,( J :::: t7ro + L. ,I1,/cos./ ,+ L. ,l1r/SIIl) i +11,11 cos +11;II Sln
/- I /- ,

(I}) ,r" 'Il' ,r'. 'V' ',. . U" I)t lf, • r :::: t rllo + L.' rro/ Slll./ i + L. ',trOi COS} f + trOll Sill + 1';/111 cos
/- I /- I

(I X)

Comparisons of eqns (15)-( 18) yield the boundary conditions for the stresses. The
results for pand p. are summarized in Table 2.

Because of the equilibrium conditions [eqns (2-5) and Appendix B] the surface loads
(and correspondingly the surface stresses) are not all independent when both surfaces are
free. From the equilibrium conditions, given in Appendix B. it is seen that for j :::: 0 only
four (instead of the six), and for j:::: I only I0 (of the 12) bound'lry forces are independent.
Thus. two of the boundary conditions for j:::: O. and j:::: I cannot be used. These are
indicated by the brackets in Table 2.

4.3. Surjllce cli.\pIClCl!ntl!f1ts

The inner or OtHer surfaces may be fixed (Fig. 3). When the inner surface is fixed. the
displacements on the inner surt~lce (r = r') arc

I/I(.'(.(}J) = O. ['I(X.OJ):::: O. wl(x.U.rl:::: O.

When the outer surface is fhed. the displacements on the outer surface (r = r") are

II" (x. O. r) ;; O. ('"(x. O. r) :::: O. 1I'"(x, O. r) = O.

(25)

(26)

The application of the above boundary conditions to specific loading conditions arc
described below.
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Table 1, The stress boundary conditions

1525

Fori = 0

" '}f'rtl = fir"

p:~, = t~l()

'I- IP,n :::= trw

r = r l ( 19)

For i = I

'" '}Prv ::= atO

'". If U

(~:~ : r:,,) r = r .
(1'", - r,,,.!

(10)

For; ?: 1

r = r'

r = r",

/; ~,
"

P:~ , .::}(fl/'

P;I;
., ',- ,,-

T == r'tr/l/. I'/'f ~ r,d]

Ii:, ~
;' ,;~~

,,-
'"" :::': c.'I

,;:', " Ii:'; - ri;';

}"r,'
,i;;, " I;;;; ,.- r r".',11/. t",/ ..

/;',', " .".
i~'·1'1\/' 1'\1 ,-

(14)

5. AXIAL LOAD AND TORQUE

When only an axial force N, and/or a torque T arc applied the strains arc independent
of 0 and arc a funclion of r only. In this case the displacements are [eqn (19)]

II' = II~. v' = v~. w' = w~. (27)

The required six boundary conditions are as follows. For the axial toad and the torque we
have [egns (11-12)]

f
f.

2n: " rO',,,(r) dr = N,

2n: if" r 1r'lI,,(r) dr = T.
"

(28)

The suhscript 0 indicates that the stresses correspond to the u~. l'~. II'~ displacements (Table
1.5). For 1I:'.I'~. 1I',~ the bending moments M,. [egn (13)] and ,',,[: [egn (14)] are 7.ero
(.\1\. = AI: = 0).

In the ahsence of surl:lce loads. the boundary conditions on the inner and outer surfaces
are [egns (19) and (20»)

0'.'" = 0

t,'II" = O. r = r'

'trl't' = 0 (29)

0":" = O. r = r". (30)
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6. BE:"ODIt"G

The cylinder is subjected to a pure bending moment M which has two components ;\1,
and J( (Fig. ~). By our definition [eqn (1.7)] the displacements in each layer are

(31 )

The required 12 boundary conditions are as follows. The first two boundary conditions
are obtained by substituting the appropriate expressions for the stresses [eqn (18)] into eqns
(13) and (I ~). and by integrating with respect to 0. The results an:

n: I" r~ri :B(r) dr = M,
"

(32)

For Iti,. I"i,. lI·i. the axial force N, [eqn (11)1 and the torque T [eqn (12)] are zero (N, = O.
T, = 0).

The displacements Iti. ,.i. II': are lero. The stresses (rif!" . " i;') wrresponding to these
displacements arc then also lero. Thus. in the absence of surface loads. the boundary
conditions on the inner and outer surfaces are

inner surface (I' = 1") [eqn (21)1

.1,
IT,ll = O•

• 1\ )
f,/l ll = (. i,',;11 = 0

outer surface (r = r") [eqn (22)1

7. SURFACE LOADS

(33)

(34)

A cylinder is subjected to normal and tangential surface loads at the inner and outer
surfaces (Fig. 2b). Under the action of these loads the displacements arc [eqn (6)]

(35)

We obtain the solution to this problem in two steps. In the fIrst step we calculate the
displacements under the restriction that the axis of cylinder remains straight. This results
in the Af~and M~bendingmoments shown in Fig. 5. In the second step we calculate the
displacements in the cylinder when subjected to bending moments which have the same
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-M~~ •
-My

Fig. 5. Solution steps for a cylinder subjel:tcd to surface loads.

ahsolute values as M~ and M~ but are of thc oppositc sensc. The final displacements are
thc sum of the displacements givcn hy solution steps one and two.

7.1. Axis remains stra(qht
Whcn the axis remains straight U[I. 1'[•• 11'[, are zero. and thc displacements arc

(36)

wherc II,:. 1":,11':' are givcn hy cqns (1.9) and 11[,.1':. III by cqn (10).

Boundary conditiollS for u!'. I ..:. II':'. In Ihe abscncc of an axial load N, and a torque T
eqns (II) and (12) yield

2n: r'" rO",o(r) dr = 0J.

(37)

As was noted before. for u!"I'!'. \I',: the bending moments M, [eqn (13)] and AI: [eqn (14)]
arc zero (M, = 1'.1: = 0). The boundary conditions for the surface loads at the inner and
outer surl~lces arc [cqns (19) and (20)I

I "
G ru = Pro

r rial) = P,',: , = r l

(39)

Boundary conditions for u~, I'~" Ir~ (j = I). Next we examine the boundary conditions
required to determine the constants in the j = I terms of the series u~, v~, w~. Referring to
eqns (21) and (22). the boundary conditions arc as follows:
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Since the axis remains straight u~. r~. I\.'~ are zero. The corresponding stresses
(ti :B ..... f:,B) are also zero. Thus, from eqns (21) and (22) the boundary conditions at the
inner and outer surfaces are:

inner surface (r = r') [eqn (21)]

a:,= P~I.

f;HI = P~I'

(40)

outer surface (r = rO) [eqn (22)]

(41 )

Once all the constants in the displacements are known the stresses can be calculated.
The bending moments M~and M~are then evaluated by

(42)

For II{..I':. 11';, (j = I) thc axial forcc N, [cqn (II)] and the torque T [eqn (12)] arc zero
(N, = O. T = 0).

BOllI/clary cOl/clitiol/s j(Jr 1I{.. L';,. II'{. (j ~ 2). Next we examine thc boundary conditions
required to determine the constants in the} ~ 2 terms of the series u:" I'{." w:'. The boundary
conditions at the inner and outer surfaces are:

inner surface (r = r') [eqn (23)]

outer surface (r = rO) [eqn (24)]

"n "0 ..". ·0.

r"j = P'\!' r", =p".

(43)

(44)

The axial force N, [eqn (II »). the torque T [eqn (12)). and the bending moments AI,. [eqn
(13)] and Ai: [eqn (14)) arc zero when} ~ 2 (N, = O. T= O. M: = O. M,. = 0).

7.2. Cllrl'ed axL5
To complete the problem we impose the bending moments - M~and - M~[eqn (42)]

on the cylinder. as shown in Fig. 5. The calculations then proceed along the lines described
above for pure bending [eqns (31 )-(34)].
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7.3. Displacements under surface loads
The complete displacement field is obtained by summing all the displacements for the

case when the axis remains straight and for the case when the axis is curved.

8. INNER AND OR OUTER SURFACES FIXED

Finally we consider problems in which either the inner surface. the outer surface. or
both of these surfaces are fixed. When either of these surfaces is fixed the axis must remain
straight and the displacements in each ply are [eqn (6)]

(45)

Below we describe the boundary conditions for a cylinder with the inner surface fixed
and surface loads applied on the outer surface. In this case the displacements of the inner
surface are zero (r = r')

u'(:dJ.r) = 0, {'1(x.O.r) = 0, wl(x.OJ) = 0.

The surface loads on the outer surfaces are (r = rO) [eqn (16)]

p~(O) = 0';(0. r)

fI~'(O) = r;,(O. r).

From eqns (46) and (6) we have (r = r')

II,~ (x. OJ) = O. I\~ (x. OJ) = O. Ir,~ (r) = 0

II~(O, r) = o. 1':.(0. r) = 0, lI'i(o. r) = O.

BOllndary conditioNS jllr II~, I'~. Ir,~ (j = 0)
The displacements II~, l'~. w~ are [eqn (1.9)]

II,~ = II~X+ II~O+1I:(r)

l',~ = l'~xr+I'~Ur+l':(r)

II'~ = Il'~(r)

(46)

(47)

(48)

(49)

(50)

where 11.1 , "h. I'a. l'h are constants. while 1I:(r), l':(r). It',~(r) are given by eqns (1.11 )-( 1.13).
Due to the periodicity conditions [eqn (8)]1I~ and {'~ are zero. From eqns (48) and (50) we
obtain the following boundary conditions for the displacements at the inner surface (r = r i

)

II~ = o. II: (r) =°
1'1 = 0, l': (r) = 0

1I',:(r) = 0. (51)

The boundary conditions at the outer surface (r = rO) are [see eqn (20)]

n '"l''I
O'ro = Pro

(52)
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There are eight boundary conditions [eqns (51) and (52») instead of the six specified in
Table I. The reason for this is that the restriction of no rigid body motion is incorporated
in the displacement boundary conditions [eqn (51 )]. Hence. the condition of no rigid body
motions (uJ = I'J = 0 in Table I) is now not used separately.

Boundary conditions for u~. I'~. Ir~- (j ~ I)
Next we examine the boundary conditions for the j ~ I terms of the series representing

u~. l'~. II'~, By comparing eqns (10) and (49) we obtain the following six boundary conditions
for the displacements at the inner surface (r = r')

u/(r) = O. u/·(r) = 0

I'/<r) = O. {·r(r) = 0

lI'i (r) = O. Il)· (r) = 0,

The boundary conditions at the outer surface (r = r') are [see egn (24)]

(53)

." "p

r,"t = /,11,.

(54)

There arc 12 boundary condilions [eqns (53) and (54») for every jth term of the series,
Table I indicales the need for only 10 boundary condilions when j = I. The addilionallwo
boundary condilions arc introduced because the condilion of no rigid body motion
(G/~ = G}~ = 0) is nol used separaldy.

The above boundary conditions apply when the inner surface is fixed. The boundary
condilions can be eSlablished in ,tn identical manner when either the ouler surface is fixed.
or if both lhe inner and outer surfaces arc fixed.

Table 3. The input parameters reljuired for the CYLINDER computer
code

---_._----------- --------
Geometry

-inner radius. r'
-thickness of one ply. II"
·--number of ply groups. 11

-number of plies in each ply group. "',
-direction (angle) of libers in each ply group. 4>,

M'lterial (OIl-.llIis) properties
-Longitudinal Young's modulus. E,
-Transverse in-plane Young's modulus. E2
- Tr.msvcrse out-or-plane Young's modulus, E,
-Shellr moduli. G210 Gil. G '2

-~Poisson's ratios. r!.h l'1 t. t' l ~

-Longitudinalthcrmal ellpansion eoetlicienl. 'l,

._-Tr.msverse in-plane thermal ellpansion eoetlieienl. 'l,

-Transverse out-of-plane thermal el\pansion eoclfieient. Cl,

Loads
- Tensile force. N,
-Torljue, T
-Bending moment in the x y plane. .\1,
-Bending mOlllent in Ihe x-: pl'lne, At,
_·Surl;lce lo'lds on the inner surface. p;. p,'" I",
-··Surf'lce loads on the outer surface, p;'. p;;. p~
-Temperature. 1\T

Constraint
DlSplacemcnts along Ihe inner surf,lI:e

--- Displ,ll'cments along the outcr surf'lI:e.
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Table 4. The output parameters for the CYL­
INDER computer code

-Strains in each ply. 1:,. I:,~ I:~ "0" "". I''''
-Stresses in each ply. (J,. (J", (J,. r,•. '", r,~

-Displacements in each ply. u. I', "".

1531

'.I. METHOD OF SOLUTION

The equations presented in Paper I together with those given in the present paper
form a complete set for calculating the displacements. stresses and strains under specified
boundary conditions. Solutions of these equations require extensive analytical and numeri­
cal calculations.

The analytical calculations were performed with a symbolic manipulator. "Mathe­
matica" (Wolfram. 1988). This resulted in a set of simultaneous algebraic equ'ltions for
the unknown constants in the displacements. The constants were determined from these
equations. A computer code (designated as CYLINDER) was written for performing the
calculations. The input parameters required for and the output parameters provided by the
code are given in Tables 3 and 4.

Typical computational time on a Macintosh rr personal computer for a hundred ply
laminate is approximately eight minutes.

10. SAMPLE PROIlLEM

Solutions were ontained for a sample pronlem to illustrate the output provided by the
model and the CYLINDER code. A problem similar to that given by Hyer c( al. (1986)
was analysed. The cylinder consists of four plies. The liners in the lirst (innermost) and
third plies arc at an angle IP with the axis of the cylinder (Fig. 6). The liners in the second
and fourth (outermost) plies arc orthogonal to those in the other two plies. i.e. the fiber
orientation in the sewnd and fourth plies is (p +90 .

The analysis of Hyer c( al. (19X6) is applicable only to cross-ply cylinders. and hence
the results given by Ilyer e( al. are only for (p = 0 and (p = l)O'. Our analysis is applicable
to general anisotropy. and we cakulated results for cylinders with cP varying from 0" to 90'.
The material properties used in the cakulation were the same as those used by Hyer e( ul.
and arc given in Table 5.

For the two special cases of (p = o· and (p = 90' the displacements and the stresses
cakulated by the present model were the same as those obtained by Hyer et u/.

We have also cakulated the angular and axial deformations of the cylinder as a function
of (/J (Fig. 6). As expected. these deformations depend on the ply orientation (p. In the
present problem the etll:ct of the ply orientation cP on the axial deformation is small because

Table 5. Data for the s:lmple problem

Geometry
-inner radius. " = 6.35 mm
-thickness of one ply. h" = 0.127 mm
--number of plies. 1/ = 4
- ply orient;lt'ltion. [<p;90 + "'/"';90 + 4>1. (0 ~ IP ~ 90 )

Material (on-axis) properties
-Young's moduli. 1:', = 146.X GP;I

I:'~ = 9.929 GPa
1:', = 9.101 GP;I

-Shear moduli. G:, = 3.05 GPa
G,,=G,:=7.17GPa

--Poisson's ratios. /':, = 0.49
l'" = 1',: = 0.3

-Thermal eltpansion coeflicients. 1, = - 0.00774 • 10 .• C"
1: = 1, = 33.66.10 • C· I

Temperature difference
-IiT= -1110C
Edges unconstrained
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. 0
0 [tIl/90+ tIl/tIl/90+ til] ~T = ·280°C
• •
~

=.S!
~=;

E5.. ·1 •.:
l!..
~
:I
U
Cl
~

·1 •• 61 ..• 1•

-..- -4.!•.
'"--•'! .1.'
~

J
• 10 •• 61 ..

Ply ADlle, til (dearee)

Fi~. Ii. The angular defornwtion (i"" " d,./dx) and the axial strain (I:. = dll dx) of ;1

[")/l)O+(~(p;l)O+(pl cylinder cooled by tiT = 2MO C (sec Table 5).

there were only four plies in the cylinder. In a thicker cylinder the axial deformations may
he alreeted more significantly by changes in c/>. It is interesting to note that although the
layup is balanced. the angular deformation is not zero. This means that the cylinder rotates
about its axis except when cp = O' and c/> = 1)0 .

The stress distributions in a [45/ -45/45/ -45] cylinder are presented in Fig. 7. In this
ligure only fT,. a". a r• r,,, are shown because the other two components r". r"r are zero. We
observe that there arc considerable shear stresses inside the cylinder. This is in contrast to
the results of I-Iyer t.'t al. in whose problem (cross-ply cylinder) the shear stresses are zero .

~ 20

! .e
145/·.5/.5/·45 I

10

.. 20.---------------,...
;:

6.9'.11

..
! .
<II

:I...<II....L- ~......::::=-'-~~_.1

'.J '.4 '.S •.• '.1

- .....---------------:=,....-,:.
~

'.4 '.5 •.••.1 '.8 •.•

t:J' OJ

:i
:: '.2
Vi
:3 e.1....•
ce e.o '.J

.. 0.5,--------------,...
~ ...

R••II.1 PosICIon, r (mml

Fig. 7. The stress distribution in a [45, -45,45' -451 cylinder cooled by ~ T = 2XO C (sec Table 5).
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The aforementioned results illustrate that the ply orientation affects significantly the
strains and stresses. Obviously. analyses developed for orthotropic cylinders should not be
applied to cylinders with non-orthotropic ply orientations.
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APPENDIX A: THE SERIES OF THE TEMPERATURE LOAD

The given temperature ~ 1'(0. r) is expressed in the following series

~T = L {[ f ~TI.(r)'JcosjO+[f ~ T/~(r)'Jsin jO}.
1_0 j_O J_O

(AI)

In thc anovc csprcssion !'J.T in each ply is known. The ohjcctive is to lind the constants t\7;, and ~T,~ for
c,lCh ply. At a givcn radius r, (k = I.:!..... ,\() the temperature can he expressed hy the following Fourier series

t\tdll) L :"t" cos /11 .. "t,",. sin jill
/_11

where thc wnstanls 1\7;, and I\r,~ arc given hy [scc cqns (AS) (1\7)1

{
If".,- A'l'(II,r,)cosjllc.1IJ if /=0

_7t II

At" = If"- l\'l'(II,r.jws jllc.1IJ if j;:, I
1C "

{

Oil' j = 0

""t",. = If", . Anll,r,> sin jlldll if j ~ I.
1C "

(A:!)

(A3)

(M)

Equations (A3) 'll1c.1 (1\4) providc ,\[ valucs of thc constants"" t". At,",. in cach ply. Ncst. using thc
!cast squarc Illcthod (Korn amI Korn. 19111() filth ordcr polynomials (fII ~ ,\(-1) arc tillcd to thc Ar" and
thc i\ t,",. valucs. Thc wcllicicnts of thcsc polynomi,tls arc thc constants 1'17;". AT, ,..... 1'17;,,,, . II' and ATJ~"

L\ f ,•I ••..• L\ T,~," I,"
The Fourier series of an arbitrary periodic function f((/) with the periud 21C is (Kurn and Korn. 19611)

f((l) = L U;cosjll+[,°sinjll:
/- II

where

{'f:;- f(lI)cosjOdli if j=O
~1C 0

f,-
I - I ,.

;r J. f(lI)cosjOdli if j~l

r if j=O

f,0 = I :.
I ;l j"(O)sinjOdO if .i ~ I.

SAS :!lJ:l2-r

(AS)

(A6)

(A7)
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APPENDIX B: EQUILIBRIUM CONDITIONS FOR THE LOADS

Suh,titutlon of thl: surface forces [e4" (17)J into thl: e4ullibrium conditions. I:qns (~) (51. results In thl:
follen_ing I:quatillns

r"i< -r'it.:. = 0

(r"):p:~: -(r')'ft::. = o. IBI)


