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Abstract— The stress analvsis of Kollir and Springer (1992) Ine. J. Solids Structures 29, 14991517,
is applied to fiber-reinforced organic matrix composite cylinders subjected to hygrothermal and
mechanical loads. The wall of the cylinder may be “thin™ or “thick™. An individual fiber must
remain at the same radial distance from the axis; no other restrictions are placed either on fiber
oricntations or on stacking sequence. The applied loads may vary radially and circumferentially,
but not axially. Solutions are presented which yield radially and circumferentially varying strains
and stresses inside composite cylinders.

l. INTRODUCTION

In a previous paper (Kollar and Springer. 1992) we derived a sct of equations which can
be used to caleulate the stresses and strains in anisotropic laminated composite cylinders
and cylindrical scgments. In the present paper we apply the analysis to composite cylinders
subjected to hygrothermal and mechanical loads. The equations given by Kollar and
Springer (relerred toas Paper 1) are not reproduced here. We only introduce those equations
which are required for the solution of the problem and which are in addition to thosce given
in the previous paper.

1tis recalled that the solution is a three-dimensional elasticity solution of problems in
which the loads. the stresses and the strains may vary radially and circumferentially, but
not axially.

2. PROBLEM STATEMENT

We consider a eylinder made of # layers of unidirectional fiber reinforced composites
(Fig. 1). There is no restriction on either the number of plies or the orientation (ply-
angle) of the fibers in each ply. Hence the cylinder may be “thick™ and the tayup may be
unsymmetric. However, the cylinder must be long, so that the length L is large compared
to the thickness /r and to the inner r' and outer v radii (/L «< |, r*/L « |, r'/L « 1). This
approximation implics that the edge effects are neglected.

The cylinder may be subjected to hygrothermal and mechanical loads which may vary
in the radial r and circumferential ¢ directions, but must be independent of the axial
coordinate . Thus, the temperature AT and the moisture content Ac inside the composite
may vary with r and 0 but not with x. Here AT and Ac are the known temperature and
moisture content relative to prescribed reference values 7, and c,

ATO.ry=T-T, Ac0,r) =c—c,. (1)

The temperature AT and the moisture Ac can be expressed in a Fourier series
(Appendix A).

A mechanical load vV, may be imposed along the edge, as shown in Fig. 2. Axial, radial
and circumferential surface loads (p\. pi. ph: pi.ope. pi) may also be applied on the inner
and outer surfaces. All these loads may vary with @ but not with x. In addition, the cylinder
may be subjected to a torque T and a bending moment Af. The only restriction is that the
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Fig. 1. Geometry of the closed cylinder.

mechanical loads must be in equilibrium, i.e. under their combined action the cylinder
cannot undergo rigid body motion.

The inner and outer surfaces of the cylinder may be free or fixed, as shown in Fig. 3.
On a fixed surface the displacements are zero ; forces on such a surface cannot be specified.
If neither the inner nor the outer surface is fixed, the applicd forces must be in equilibrium
and must satisfy the following equilibrium conditions

force cquilibrium in the x direction

f r'p! d()—[ rpedd =0; (2)
0 {]

N, O r " )
x Qé, »

Fig. 2. Hlustration of the loads on a closed cylinder.

AT(8.r)
acloe.r)
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Both surfaces [nner surface is fixed,
are free outer is free
Inner surface is free, Both surfaces
outer is fixed are fixed

Fig. 3. The conditions on the inner and outer surfaces of a closed cylinder.

force equilibrium in the » direction

n

J ro i ps cos = pysin 0 dll—J ripicos—pysinfl} d0 = 0; 3)
1]

D]

force cquilibrium in the 2 direction

j el sint)—py cos ) d()—J ripisint—pycos0) d) =0; 4)
0

M

moment equilibrium about the x axis

0

J.R (r)’ps df)—ﬁ (r')}pydo = 0. )

The objective is to find the stresses and strains inside the composite, under the combined
action of the temperature, moisture and mechanical loads.

3. DISPLACEMENTS
The axial, circumferential and radial displacements in the /th layer have the general
form (eqn 1.7)%
' 0.r) = ul(x,0,r) +ui-(0,r) +ul(x,0,r)
e 0.r) = el 0,r) + 00, r) +rh(x, 0. 7)
w'(x.0.r) = wix. 0.r)+wh(0.r) +wh(x,0.r). 6)
The displacements u!.cv!, w! are given by eqn (1.9), uf,vf,wt by eqn (1.15) and
ug. vy, wp by eqn (1.46). The superscript refers to the /th ply. These displacements contain

a number of unknown constants in each layer (Table 1) which must be determined with
the aid of the continuity conditions and the boundary conditions. The continuity conditions

t The numeral | preceding an equation number. a figure number or a table number refers to an equation,
a figure or a table in Paper 1.
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Table 1. The unknown constants in the displacements, continuity, periodicity. no rigid body motion and boundary

conditions
uj vl owi
ulelow! j#E 1 j=1 Ug. Uhowi
Unknowns (one layer) Al AL Gl. k=1.2.... 6 NVHY
alowd ul g Gh. j=12..., number of Fourier k=12, 6
vloee.elel terms NOHE
Number of unknowns 10sn (2«6)n 2+(2«6)n
for each Fourier term
Continuity conditions [0»(n—1) (2+6) (n—1) (2«6) (n—1)
for each Fourter term
Periodicity conditions up =0, tg=0
No rigid body motion g =0, vj=0 G=0. G;=0| H' =0, H{=0
Boundary conditions if 6 2«6 25 2s6
there are no rigid body for each Fourier term
motions

are given in Tables 7-10 in Paper |, and are not reproduced here. The boundary conditions
which must be applicd in a specific problem are described subsequently. First, it is noted
that for a closed cylinder certain periodicity conditions must also be satisfied. The periodicity
conditions reflect the fact that cach displacement must be a periodic function of 0, and must
have the same value at 0 and at 0+ 2n, i.c.

Wi, 0.r) = ' (v 0+ 2nr.7),

e 000 = el 0+ 2, r),

wie, 0.r) = w!(x,042m,r). (7)
For ul, v}, w} these conditions require that the following equalitics be satistied [eqn (1.9)]
! i
w=0, ¢l =0. (8)

When ) and ¢ are zero in any given ply. they must be zero in every ply by virtue of the
continuity conditions (Table 1.8). Thus, the periodicity conditions in eqn (8) become

u =0, =0 )

To satisfy the requirements of eqn (7) we must also set €, equal to m in the expressions for
uf, vy, wi. Thus, wf, vf, wi become [egn (1.15)]

wp(0.r) = Y {u/(r)sin jO, = ¥ {u/*(r)cos jO}
1= =1

ciOor)y = Y {t/(rysin jO; = 3 {v/*(rycos jO,
gl =1

wi(0,r) = Y {w/(r)cos jOL + Y {w/*(r)sin jU;. (10)
1= IR

Equations (9) are the periodicity conditions. The unknown constants in the expressions
for the displacements (see Table 1) must be determined with the use of these periodicity
conditions, together with the conditions of no rigid body motion, the continuity conditions.
and the boundary conditions. The no rigid body motion and continuity conditions are
specified in Paper | by eqns (56)-(58) and by Tables 7-10, respectively. The required
boundary conditions are given in this paper.
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4. GENERAL BOUNDARY CONDITIONS

In this section we present the general forms of the boundary conditions for a closed
cylinder. We will then apply these boundary conditions to specific loading conditions.

4.1. Axial load. torque and moment
The axial load N,. the torque T, and the M, and M. components of the bending
moment in terms of the axial o, and shear stress t,, are (Figs 2 and 4)

N, = J" -[:K re (.r)d0dr (1
T = J J:R rira(0.r)dodr (12)
M, = J:“ rie (0,r)cos0d0dr (13)
M. = f ‘[):R ria (0.r)sin0d0dr (14)

where M, and M. are the components of the applicd bending moments in the v—p and x-=
planes, respectively (Fig. 4).

4.2, Surfuce loads
Axial p,, radial p,, and circumferential loads p, can be applied on the inner and outer
surfaces. As stated before cach of these loads may vary with ¢. On the inner and outer
surfaces the applied surface loads are related to the stresses by the expressions
pi) = a;(0.r)

/’;‘U) = trlu(”J'). r=r
POy =1/(0.r) (15)

N

y

Fig. 4. Components of the bending moment .
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pr(8) = a7(0.r)

g0y =, (8.r). r=1r°

po(O) =t (B.r) (16)
The superscripts i and o refer to the inner and outer surfaces, and | and » to the innermost

({ = 1) and outermost (/ = n) plies.
The surface loads may be expressed in terms of the Fourier series

)U(U) = Z (p;,OCOSj(?)'*_ Ay f “‘tﬁln ,U)

j=0 1= f’
POy =Y [pisin jO}+ Y [pir*cos jO)
]=0 i=0
Py =Y (petsin j0L+ Y {pie*cos ji)). (17

1= 0 J=0

The manner in which the constants p and p* are determined is discussed in Appendix
A [eqns (AS-AT)). Equations (17) apply at both the inner (superscript i) and outer surfaces
(superseript 0). Substituting these surtace forees into eqns (2-5) the equilibrium conditions
can be expressed in terms of poand p*. The results are summarized in Appendix B.

The stresses may also be written in series form, as shown in Table 1.5, The following
four stress compaonents, taken from Table 1.5, are of interest here

a(ihr) =a,+ Y {d,cos j0i+ Y la%sin ji] +d ) cosl+di,sin0
-1 ,Al

o l.r) =a,+ Z {d, cos ji + Z 1arsin jO) + 65 cos M+ sint)
=1 1=

T r) = 1, + Z 1T, sin jO} + Z {th cos jOL 470y sin O+ T, cos 0

11 g=1

Tl r) = Tro+ 3 1T, sin jO}+ Y 1%, cos jO} +1 5y sin O+ Fip cos 0., (18)

-t ey

Compurisons of eqns (15)-(18) yield the boundary conditions for the stresses. The
results for p and p* are summarized in Table 2.

Because of the equilibrium conditions [eqns (2-5) and Appendix B] the surface loads
(and correspondingly the surfuce stresses) are not all independent when both surfaces are
free. From the equilibrium conditions, given in Appendix B, it is seen that for j = 0 only
four (instead of the six), and for j = | only 10 (of the 12) boundury forces are independent.
Thus, two of the boundary conditions for j =0, and j= 1 cannot be used. These are
indicated by the brackets in Table 2

4.3. Surfuce displacements
The inner or outer surfaces may be fixed (Fig. 3). When the inner surface is fixed, the
displacements on the inner surface {r = ') are
W, 0,10 =0, M. 0.10=0, w'(xv..r)=0. (25)
When the outer surfuce s fixed. the displacements on the outer surface (r = r*) are

Wx. 0.ry =0, ¢"(x.0.r)=0. w'(x,0.r)=0. (26)

The application of the above boundary conditions to specific loading conditions arc
described below.
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Table 2. The stress boundary conditions

Forj=0
. '
Pro = 0r,
o= oo r=r (19
s )
pm = I,‘,,
Lo "
Pre =0
ey
(Pio = Thio) r=r" 20
e
(A5 =17}
Forj=1
. s it e ste | ags
Po = O +00g, P =6, +04
P =Tl + e Pt = Tl + Thig r=r' (1)
o 1 <ty <o .ie a:
Pa=Tty+lig. PO =00+00
n . o Loe cme | m:
po =00 +ah. o= al +aly
o . sy sue e sn: o B}
(P = Fon -+ T ). (I’e:| = T + Trin) r=r. (22)
< 3 . So ane N
X VIR PO =0+
Forjz2
. Y v e
pL=dL ph =4
-. ] s e
Pu, = Ly [’n’, = T, r=r (2})
N o L e
L A R
s St s .
AT P’y 0,
. L ‘e cne o “
Pog 7 L P o= T, re=r., (24
o N TS Jre
Do =ty Py =ty

S, AXIAL LOAD AND TORQUE
When only an axial foree N and/or o torque T are applied the strains are independent
of 8 and arc a function of r only. In this case the displacements are [eqn (19)]

u'=ul, v'=0pl, w=wl @2n

The required six boundary conditions are as follows. For the axial load and the torque we
have [egns (11-12)]

,.u
27!J ra(rydr = N,

27:‘{ FPrg(rydr=T. (28)

The subscript o indicates that the stresses correspond to the ), v, w/ displacements (Table
1.5). For u/, vl w! the bending moments M, [eqn (13)] and M. [eqn (14)] are zero

(M, = M_=0).
In the absence of surface loads, the boundary conditions on the inner and outer surfuces

are [eqns (19) and (20))
ar‘n =0
the =0, r=r

To =0 (29)

g, =0, r=r°. (30)



1526 L. P. KOLLAR er al.
6. BENDING

The cylinder is subjected to a pure bending moment M which has two components A,
and M. (Fig. 4). By our definition [eqn (1.7)] the displacements in each layer are

u' =uy. vl =rh. w=wl 3

The required 12 boundary conditions are as follows. The first two boundary conditions
are obtained by substituting the appropriate expressions for the stresses [eqn (18)] into eqns
(13) and (14). and by integrating with respect to 6. The results are

nJ‘ rra(ndr = M,

rzj rigia(r)ydr = M. 30)

For uy. 4, wi the axial force ¥, [eqn (1 D] and the torque 7 [eqn (12)] are zero (N, =0,
T,.=0).

The displacements wy . v, wi are zero. The stresses (G, .. th) corresponding to these
displacements are then also zero. Thus, in the absence of surface loads, the boundary
conditions on the inner and outer surfaces are

inner surtace (r = ') feqn (21)]

G =0, =0
A

Ty = 0, o =0

frl\vn =0, frl(‘u =0 (33)

outer surface (r = r') [eqn (22)]

s>

ap =0, o =

Ty =0, @0 =0. (34)

7. SURFACE LOADS

A cylinder is subjected to normal and tangential surface loads at the inner and outer
surfaces (Fig. 2b). Under the action of these loads the displacements are [egn (6)]

! ! { i il i ! 4
w =l tul+ul, ol =chvel 4ol wi= w4l 4w (33)

We obtain the solution to this problem in two steps. In the first step we calculate the
displacements under the restriction that the axis of cylinder remains straight. This results
in the M *and M *bending moments shown in Fig. 5. [n the second step we calculate the
displacements in the cylinder when subjected to bending moments which have the same
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Fig. 5. Solution steps for a cylinder subjected to surface loads.

absolute values as M *and M *but arc of the opposite sense. The final displacements are
the sum of the displacements given by solution steps one and two.

7.1, Axis remains straight
When the axis remains straight ), o, wi arc zero, and the displucements are

W =l tul, =il w = w4 (36)

where w!, vl wlare given by eqns (1.9) and ., vy, wy: by eqn (10).

Boundary conditions for ), v!, wl. In the absence of an axial load N, and a torque T
eqns (11) and (12) yield

27!J‘ re (r)dr=0
2nj rrra(rydr=0. 37

As was noted before, for u), 5, w! the bending moments M, [eqn (13)] and M. [eqn (14)]
are zero (M, = M, = 0). The boundary conditions for the surface loads at the inner and
outer surfaces are [eqns (19) and (20)]

1
6“' = [’ru
I _ o —
Too =Pos =T

rfIXU = 13::1 (38)

o

ar, = pr, r=r°. 39

Boundary conditions for uk, v{, wi: (j = 1). Next we examine the boundary conditions
required to determine the constants in the j = 1 terms of the series uf, v, wi. Referring to
eqns (21) and (22). the boundary conditions are as follows:



1528 L. P. KOLLAR et al.

Since the axis remains straight uj. . wji are zero. The corresponding stresses

(65.....15s) are also zero. Thus, from eqns (21) and (22) the boundary conditions at the
inner and outer surfaces are:

inner surface (r = r') [eqn (21)]

d'rll = p:—l U\ll. = P'rT

f:m = Plu fll'ﬁ.l = P:a‘l

frlxl = P"l frl:l = P'\.l (40)
outer surface (r = r’) [eqn (22)]

J0®

an )
O¢ =p;l- Url = prl
- -y Ahd

Tra = P T =P . 4n

Once all the constants in the displacements are known the stresses can be calculated.
The bending moments M Fand M *are then evaiuated by

M*=n J- ridé,(r)dr
M*=n J ria* (r)dr. 42)

For uf, vy, wi: (j = 1) the axial force N, [egn (11)] and the torque T [eqn (12)] are zero
(Ne=0,.T=0).

Boundary conditions for ul, vy, wi: (j = 2). Next we examine the boundary conditions
required to determine the constants in the j > 2 terms of the series u:, vy, wi.. The boundary
conditions at the inner and outer surfaces are:

inner surface (r = r') {eqn (23)]

‘l _ Al .l. - a e
O = Poys O =Py
r()/ pt)/v rt)/ P&/

r‘/ pr\/‘ ‘rlx‘/ = p‘/ (43)

outer surface (r = r°) [eqn (24)]
=py. 6 =po

e

m, I’u, f:'u, = Poj
an .o S
rru’ = pxlv rru pu (44)

The axial force N, {eqn (11)]. the torque T {eqn (12)], and the bending moments M, [eqn
(13)] and M. [eqn (14)] are zerowhen j2 2 (N, =0.T=0, M. =0, M, = 0).

7.2. Curved axis

To complete the problem we impose the bending moments — M *and — M ¥[eqn (42)]
on the cylinder, as shown in Fig. 5. The calculations then proceed along the lines described
above for pure bending [eqns (31)-(34)].
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7.3. Displacements under surface loads
The complete displacement field is obtained by summing all the displacements for the
case when the axis remains straight and for the case when the axis is curved.

8. INNER AND OR OUTER SURFACES FIXED

Finally we consider problems in which either the inner surface. the outer surface. or
both of these surfaces are fixed. When either of these surfaces is fixed the axis must remain
straight and the displacements in each ply are [eqn (6)]

W =ultub, =clvel, wi=wltwt (45)
Below we describe the boundary conditions for a cylinder with the inner surface fixed

and surface loads applied on the outer surface. In this case the displacements of the inner
surface are zero (r = r')

u'(c.0,r) =0, ¢'(x,0,r)=0, w'(x,0.r)=0. (46)
The surface loads on the outer surfaces are (r = r°) {eqn (16)]

p2(0) = 02(0.1)
PO = T 0.7)
po(0) =17 (0,r). (X))

From eqns (46) and (6) we have (r = r')
w(e,0,r)=0, .0, =0 wi(n=0 (48)
w(0.r) =0, vj(0.r) =0, wi(0,r)=0. (49)

Boundary conditions for ul,vl, w!l (j =0)
The displacements ), v}, wl are [eqn (1.9)]

!
t,

wx+ul0+ul(r)
vl =elxr+ol0r+0l(r)
w!=wl(r) (50)
where u,, uy,, .. ry arc constants, while «/(r), vl(r), wl(r) are given by eqns (1.11)~(1.13).
Due to the periodicity conditions [eqn (8)] « and ¢y are zero. From eqns (48) and (50) we
obtain the following boundary conditions for the displacements at the inner surface (r = r')
u' =0, w(r)=0
i =0, tl(r)=0
wi(r) = 0. 61))

The boundary conditions at the outer surface (r = r°) are [see eqn (20)]

n _, 50
0o = Pro
n __ o

rr()o —pllo

T =Pl (52)
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There are eight boundary conditions [eqns (51) and (52)] instead of the six specified in
Table 1. The reason for this is that the restriction of no rigid body motion is incorporated
in the displacement boundary conditions [eqn (31)]. Hence, the condition of no rigid body
motions (1, = ¢4 = 0in Table 1) is now not used separately.

Boundary conditions for uf. vt . wk(j= 1)

Next we examine the boundary conditions for the j 2 | terms of the series representing
ug, U, wi. By comparing eqns (10) and (49) we obtain the following six boundary conditions
for the displacements at the inner surface (r = r')

w(n=0. u(n=0
=0, ¢;°(n=0
w/(r)=0. w/"(r)=0. (53)

The boundary conditions at the outer surface (r = r') are [see cqn (24)]

“u e

xL) ~ne
O = Poys O =Py

. = e cne
T, = Pos Togy = Poy

Ty =Pu. T =Py (54)

There are 12 boundary conditions {cqns (53) and (54)] for every jth term of the series.
Table | indicates the need for only 10 boundary conditions when j = 1. The additional two
boundary conditions are introduced because the condition of no rigid body motion
(G)s = G; = 0)is not used separately.

The above boundary conditions apply when the inner surface is fixed. The boundary
conditions can be established in an identical manner when cither the outer surface is fixed,
or if both the inner and outer surfuces are fixed.

Tabie 3. The tnput parameters required for the CYLINDER computer
code

Geometry
—inner radius, ¢
—thickness of one ply, 4,
—-number of ply groups, #
~—number of plics in cach ply group, m,
—direction (angle) of fibers in cach ply group, 4,

Muterial (on-axis) properties
- Longitudinal Young's modulus, £,
—Transverse in-pline Young's modulus, £,
—Transverse out-of-plane Young's modulus, £,
—Shear moduli, G,.. G,.. G,
- POISSON'S TAHOS, Uayy £y s
~-Longitudinal thermal expansion coetficient, x,
—Transverse in-plane thermal expansion coetlicient. 2,
—Transverse out-of-plune thermal expansion coetheient, x,

Loads
—Tensile force, N,
—~Torque, T
—Bending moment in the x y pline, M,
~Bending moment in the x-2 plane, M,
—~Surfiuce loads on the inner surface, pi, i, pl
~Surface loads on the outer surface, p;', pi, p3
—Temperature, AT

Constraint

- Displacements along the inner surface
~— Displacements along the outer surface.
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Table 4. The output parameters for the CYL-
INDER computer code

—Strains in each ply. & & En Jyr Tae Tin
—Stresses in each ply. 6., 0.. 6. T,. Ty Te
—Displacements in each ply. u. . w.

9. METHOD OF SOLUTION

The equations presented in Paper | together with those given in the present paper
form a complete set for calculating the displacements, stresses and strains under specified
boundary conditions. Solutions of these equations require extensive analytical and numeri-
cal calculations.

The analytical calculations were performed with a symbolic manipulator, **Mathe-
matica”™ (Wolfram, 1988). This resulted in a set of simultaneous algebraic equations for
the unknown constants in the displucements. The constants were determined from these
equations. A computer code (designated as CYLINDER) was written for performing the
calculations. The input parameters required for and the output parameters provided by the
code are given in Tables 3 and 4.

Typical computational time on a Macintosh Il personal computer for a hundred ply
laminate is approximately eight minutcs.

10. SAMPLE PROBLEM

Solutions were obtained for a sample problem to illustrate the output provided by the
model and the CYLINDER code. A problem similar to that given by Hyer ¢t al. (1986)
wis analysed. The cylinder consists of four plies. The fibers in the first (innermost) and
third plies are at an angle ¢ with the axis of the eylinder (Fig. 6). The fibers in the sccond
and fourth (outermost) plics are orthogonal to those in the other two plies, i.e. the fiber
orientation in the sccond and fourth plies is ¢ +90 .

The analysis of Hyer er al. (1986) is applicable only to cross-ply cylinders, and hence
the results given by Hyer er al. are only tor ¢ = 0 and ¢ = 90", Our analysis is applicable
to general anisotropy. and we citlculated results for cylinders with ¢ varying from 07 to 90",
The material properties used in the calculation were the same as those used by Hyer et ul.
and are given in Table S.

For the two special cases of ¢ = 0" and ¢ =90 the displacements and the stresses
calculated by the present model were the same as those obtained by Hyer et al.

We have also calculated the angular and axial deformations of the cylinder as a function
of ¢ (Fig. 6). As cxpected. these deformations depend on the ply orientation ¢. In the
present problem the effect of the ply orientation ¢ on the axial deformation is small because

Table 5. Data for the sample problem

Geometry
—inner radius, 7' = 6.35 mm
—thickness of one ply, A, = 0.127 mm
—number of plics, n = 4
—ply orientatation, [(¢;90 + /P90 + P} (0 < p <90 )

Muterial (on-uaxis) propertics
~—Young's moduli, £, = 146.8 GPa
E,=9929 GPa
E,=9.101 GPa
—Shear moduli, G, = 3.05 GPa
G,,=G,,=17117GPa
--Poisson’s ratios, ., = 0.49
ryy=0,,=03
—Thermal expansion cocflicients, x, = ~0.00774«10* C '
2, =2, =33.66+10""%C"'
Temperature difference
—AT = =280 C
Edges unconstrained




1532 L. P. KOLLAR et ul.

a— o
S [9/90+®/®/90+®] AT = -280°C
g
-]
2
=
g ap
S
&
s
R
-]
<
2, 26 « u 80

Axial Strain (€, *10°)
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] 20 40 1] 30
Ply Angle, ® (degree)

Fig. 6. The angular deformation (3, = deidx) and the axial strain (o, = dudy) ol a
[p/ 4+ /90 + p] cylinder cooled by AT = 280 C (see Table 3).

there were only four plies in the eylinder. In a thicker cylinder the axial deformations may
be affected more signilicantly by changes in ¢, It is interesting to note that although the
layup is bulanced, the angular deformation is not zero. This means that the eylinder rotates
about its axis except when ¢ =0 and ¢ =90 .

The stress distributions in a [45/ —45/45/ —45] cylinder are presented in Fig. 7. [n this
figure only o, 6,. a,, T4 are shown because the other two components t,,, 7y, are zero. We
observe that there are considerable shear stresses inside the eylinder. This is in contrast to
the results of Hyer ef al. in whose problem (cross-ply cylinder) the shear stresses iare zero.
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Fig. 7. The stress distribution in a [45, — 45,45, =45} cylinder cooled by AT = 280 C (see Table §).
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The aforementioned results illustrate that the ply orientation affects significantly the
strains and stresses. Obviously, analyses developed for orthotropic cylinders should not be
applied to cylinders with non-orthotropic ply orientations.
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APPENDIX A: THE SERIES OF THE TEMPERATURE LOAD

The given temperature AT (0, r) is expressed in the following series

=

AT =Y {[i AT,,(r)']cos j0+[ i AT,‘,(r)‘] sinj()}A (Al)
j=t i=0

In the above expression AT in cach ply is known. The abjective is to find the constants AT, and AT} for
cach ply. Ata given radwus r (6 = 1,2,... .. M) the temperature can be expressed by the following Fourier series

AT = Y (AT cos jU + AT S sin jO; (A2)

i~

where the constants AT, and ATS are given by [see eqns (AS) (A7)

1 [
"*J‘ AT, r)cos jOLD  if =0
0

2n
AT, = | (o (A))
’;J AT, r)cos jOdO it j>=1
11
0 i j=0
(A4)

AT =<1 [ : .
. AT, r)sin jOdO o j2 1.

Equations (AJ) and (A4) provide M values of the constants AT, AT% in cach ply. Next. using the
least square method (Korn and Korn, 1968) mith order polynomials (m € M= 1) are fitted to the AT,‘ and
the AT% values. The coeflicients of these polynomials are the constants AT, AT, .... AT, .. and AT},
AT ... AT, .

The Fourier series of an arbitrary periodic function f(0) with the period 2r is (Korn and Korn, 1968)

SO =Y {fcos j0+f*sin o} (AS)
=i
where
{ pd ) ] . )
’—-J‘ S(Mcos jO0do  if j=0
2z J,
/= (A6)

l'l" f(O)cos j0d0  if j 1
® Jo

0 if j=0

A (AT

n

| n
j f(D)sin jOdO  if j2 1.
n

SAS 29:12-F
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APPENDIX B: EQUILIBRIUM CONDITIONS FOR THE LOADS

Substitution of the surface forces [eqn (17)] into the equilibrium conditions, eqns (2} (5). results in the
following equations
PR -rEL =0
’"fﬁ‘& =Pl —r g —=pul =0
BT PN, = p P =0
(r') paa —(rV i = 0. (B1)



